

Javier Gutiérrez Castro

Otimização da Performance de um Portfólio de Ativos e Opções Reais utilizando a Medida Omega (Ω)

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Industrial da PUC-Rio.

Orientador: Tara Keshar Nanda Baidya

Rio de Janeiro junho de 2008

Javier Gutiérrez Castro

Otimização da Performance de um Portfólio de Ativos e Opções Reais utilizando a Medida Omega (Ω)

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Industrial da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Tara Keshar Nanda BaidyaOrientador

Departamento de Engenharia Industrial - PUC-Rio

Prof. Marco Antonio Guimarães Dias Departamento de Engenharia Industrial - PUC-Rio

> Prof. Luiz Eduardo Teixeira Brandão IAG / PUC-Rio

Prof. Fernando Antonio Lucena AiubeDepartamento de Engenharia Industrial - PUC-Rio

Sr. Rogério Mendes Carvalho Companhia Siderúrgica Nacional

Sr. Ernesto Kazuhiro Nomi Mitsubishi Corporation do Brasil S/A

> Sr. Leonardo Lima Gomes NCEnergia

Prof. José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 04 de junho de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Javier Gutiérrez Castro

Graduou-se ocupando o primeiro lugar na Faculdade de Engenharia Industrial da Universidad Nacional de San Agustín de Arequipa (Peru) em 1999. No DEI / PUC-Rio, fez mestrado entre 2002 e 2004, sendo beneficiado por dois semestres consecutivos com a Bolsa de Desempenho Acadêmico. Em 2004 iniciou o doutorado na área de Finanças e Análises de Investimentos, e ao longo do estudo realizou diversas publicações e teve várias participações em congressos e eventos da área acadêmica. Também participou em projetos de pesquisa e aplicação para empresas, junto com professores do Departamento, tendo a Telemar e a Petrobras como seus principais clientes.

Ficha Catalográfica

Gutiérrez Castro, Javier

Otimização da performance de um portfólio de ativos e opções reais utilizando a medida Omega (Ω) / Javier Gutiérrez Castro ; orientador: Tara Keshar Nanda Baidya. – 2008.

147 f.; 30 cm

Tese (Doutorado em Engenharia Industrial)—Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Engenharia industrial – Teses. 2. Portfólio de ativos reais. 3. Opções reais. 4. Medida de performance Omega (Ω) . 5. Simulação de Monte Carlo. 6. Otimização. I. Baidya, Tara Keshar Nanda. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Industrial. III. Título.

CDD: 658.5

Agradecimentos

À cidade de Rio de Janeiro que me cobiçou como a um mais dos seus filhos.

Ao Departamento de Engenharia Industrial (DEI) da PUC-Rio que de maneira acolhedora me permitiu ser parte dele.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela ajuda financeira.

Ao professor Tara Baidya pela sua inestimável orientação e pela confiança depositada no meu trabalho.

Aos professores do DEI, pelos seus valiosos ensinamentos.

Ao grupo de trabalho da PUC-Rio composta pelos professores Tara Baidya, Cristiano Fernandes, Álvaro Veiga, Paulo H. Costa e Kátia Rocha, com os quais participei de um projeto de pesquisa e aplicação que gerou as idéias iniciais para a elaboração da presente tese.

À professora Kátia Rocha pela sua amizade e pelo seu exemplo de profissional dedicada e ótima colega de trabalho.

Aos senhores membros da banca examinadora pelos seus valiosos comentários antes, durante e após a defesa.

Ao Sr. Rogério Carvalho pelas sugestões e dicas importantes na redação do texto e formatação final.

Ao professor Fernando Aiube pelas revisões finais.

A todos meus amigos no Brasil e no Peru que ao longo destes anos compartilhamos momentos inesquecíveis. Obrigado pela sua amizade.

Resumo

Gutiérrez Castro, Javier; Baidya, Tara K. Nanda. Otimização da Performance de um Portfólio de Ativos e Opções Reais utilizando a Medida Omega (Ω). DEI PUC-Rio, 2008. 147p. Tese de Doutorado - Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

A presente tese tem como objetivo estabelecer uma metodologia que permita efetuar uma composição otimizada de uma carteira de ativos reais, determinando os que serão selecionados na carteira, de tal forma que atendam a um conjunto de restrições características da carteira sob análise, e levando em conta a possibilidade de exercer opções reais. Esta otimização se realiza em função da maximização da medida de performance Omega (Ω) , a qual se define como a relação entre o ganho médio esperada e a perda média esperada da distribuição de retornos ou da distribuição de Valores Presente Líquido (VPL). Esta medida requer que seja previamente definido o nível mínimo de retorno (ou VPL) desejado pelos investidores, que é o limite entre a área de ganhos e a de perdas na distribuição. A medida Omega (Ω) leva em consideração todos os momentos da distribuição de retornos futuros ou VPL, não se restringindo ao mundo simplificado da Média-Variância. É um fato empírico conhecido que as distribuições de muitas variáveis financeiras não seguem uma distribuição normal e que a maioria dos investidores não possuem funções de utilidade quadrática, fazendo com que a modelagem clássica de composição de carteiras proposta por Markowitz (1952) não seja apropriada nestes casos. Omega permite lidar satisfatoriamente com todo tipo de distribuições, sejam ou não normais. Na presente tese, a abordagem proposta se baseia em métodos numéricos de Simulação de Monte Carlo, para a determinação das distribuições de VPL e o cálculo da medida Omega.

Palayras-chave

Portfólio de Ativos Reais, Opções Reais, Medida de Performance Omega (Ω), Simulação de Monte Carlo, Otimização.

Abstract

Gutiérrez Castro, Javier; Baidya, Tara K. Nanda. **Performance Optimization of a Real Assets and Options Portfolio using the Omega Measure** (Ω). DEI PUC-Rio, 2008. 147p. Doctoral Thesis - Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

This thesis develops a methodology to determine an optimum composition of a portfolio of real assets. It involves selecting real assets which will be included in the portfolio and taking into consideration all the constraints which apply. The possibility of exercising real options is taken into consideration. The determination of the optimum composition is done by maximizing a performance measure called Omega (Ω) . Omega measure is defined as the relation between the expected average gain (Expected Chance) vs. the expected average loss (Expected Shortfall) of the returns or Net Present Values (NPV) distribution. This measure requires the decision maker to define previously the minimum desirable level of return or NPV, depending on the context it is being used, which is the border between the gains and losses areas in the distribution. Omega takes into account of all the moments of the distribution of the future returns or NPV, implying it does not restrict to the Mean-Variance world. It is a well known empirical fact that many financial variables don't follow normal distributions or most investors don't have quadratic utility functions, which causes the classical model of portfolio composition proposed by Markowitz (1952) inappropriate. The Omega measure can deal satisfactorily in all cases not having normal distributions or even in cases which have normal distributions. In this thesis, the numerical method of Monte Carlo Simulation is used to determine the NPV distribution and calculate Omega measure.

Keywords

Portfolio of Real Assets, Real Options, Omega Performance Measure (Ω) , Monte Carlo Simulation, Optimization.

Sumário

1 Introdução	15
1.1. Preliminares: Exposição do Problema	15
1.2. Justificativa do Estudo	16
1.3. Objetivos da Proposta	17
1.4. Estrutura da Dissertação	17
2 Considerações Teóricas	19
2.1. O Modelo de Composição de Carteiras de Markowitz	19
2.2. As Opções Reais	20
2.2.1. Tipos de Opções Reais	21
2.3. Medidas de Risco	23
2.3.1. O Valor em Risco –VaR	24
2.3.2. Perda Média Esperada (Expected Shortfall)	27
2.3.3. Propriedades de medidas de risco coerentes	29
2.4. Análise de Performance (Risco – Retorno) da Carteira	30
2.4.1. Índice de Sharpe	32
2.4.2. Medidas de Comparação: Índices de Sortino, Alfa de Jensen e Treynor	32
2.5. Simulação de Monte Carlo	34
3 Uma nova medida de performance: Omega (Ω)	36
3.1. Introdução ao Omega	36
3.2. A Função Omega	43
3.3. Propriedades da Função Omega	51
3.3.1. Representação alternativa da Função Omega	51
3.3.2. Outras propriedades da Função Omega	53
3.4. Omega e a Dominância Estocástica	56
3.5. Otimização com a Medida Omega	58
3.5.1. O Programa de Otimização	58
3.5.2. Exemplo de Aplicação	59
3.5.3. Análise dos resultados e comparações das metodologias testadas	65
4 Metodologia para Otimização de Carteiras de Investimento	67
4.1. Etapa I: Modelando a Informação	67
4.1.1. Primeiro passo: Identificação dos Fatores de Risco nos Projetos	67
4.1.2. Segundo passo: Modelagem das Variáveis com Incerteza	68

4.1.3. Terceiro passo: Determinação das Correlações entre as Variáveis de	
Risco dos projetos da Carteira	71
4.2. Etapa II: Otimização da Carteira sem Opções Reais	74
4.2.1. Considerações Prévias	74
4.2.2. O Modelo de Otimização	77
4.3. Etapa III: Otimização da Carteira com Opções Reais	79
4.3.1. Primeiro passo: Determinação do Valor de Mercado dos Projetos e	
sua Volatilidade	80
4.3.2. Segundo passo: Determinação das Correlações entre Projetos	83
4.3.3. Terceiro passo: Determinação do Valor de Mercado dos Projetos com	
Opções	84
4.3.4. Determinação dos VPL0+	85
4.3.5. O Modelo de Otimização com Opções	86
5 Exemplificação da Metodologia	90
5.1. Informação Básica sobre os Projetos	90
5.2. Etapa I: Modelando a Informação	92
5.3. Etapa II: Otimização da Carteira sem Opções Reais	98
5.4. Etapa III: Otimização da Carteira com Opções Reais	102
6 Conclusões	115
7 Recomendações	116
8 Referências Bibliográficas	117
9 Apêndices	121
9.1. Apêndice 1: Demonstração $\Omega = EC(L) / ES(L)$	121
9.2. Apêndice 2: Propriedades da medida Omega (Ω) derivadas da	
definição $\Omega(L) = EC(L) / ES(L)$	124
9.3. Apêndice 3: Cálculo de Opções Européias por Simulação	132
9.4. Apêndice 4: Fluxos de Caixa Esperados dos Projetos E2, E3, R1, R2 e	
R3	135
9.5. Apêndice 5: Gráficos das distribuições de VPL0 dos Projetos E2(0),	
E3(0), R1(0), R2(0), R3(0).	140
9.6. Apêndice 6: Matriz de Correlações entre os Projetos usando	
@Risk® 4.5	142

Lista de Figuras

Figura 1 – VaR e Expected Shorfall	28
Figura 2 – Distribuições com igual média (10) e variância (152)	31
Figura 3 – Distribuição de probabilidades dos Ativos A e B	37
Figura 4 – Distribuições contínuas dos Ativos A e B, e o limite L = 0,3	38
Figura 5 – Distribuições contínuas dos Ativos C e D, e o limite L = 1,7	39
Figura 6 – Distribuições contínuas dos Ativos E e F, e o limite L = 4,5	41
Figura 7 – Distribuições contínuas dos Ativos G e H, e os limites L = 0,85	
e L = 1,5	42
Figura 8 – Distribuição de retornos com um limite L=1,4	43
Figura 9 – Distribuição cumulativa com os respectivos ganho (g) e perda (l)	
esperados	44
Figura 10 – Ganhos (retângulo superior) e perdas (retângulo inferior)	
ponderadas, relativos ao retorno limite L=1,4	45
Figura 11 – Reduzindo os intervalos entre retornos refina-se a estimativa de	
ganhos e perdas relativos a L =1,4	46
Figura 12 – O limite quando a unidade de ganhos e perdas tende a zero.	46
Figura 13 – Caso 1: Função In(Ω(L)) para os ativos A e B	48
Figura 14 – Caso 2: Função In(Ω(L)) para os ativos C e D	48
Figura 15 – Caso 3: Função In(Ω(L)) para os ativos E e F	49
Figura 16 – Caso 4: Função In(Ω(L)) para os ativos G e H	50
Figura 17 – Função In($\Omega(L)$) para os ativos G e H'	50
Figura 18 – Numerador (EC(L)) e denominador (ES(L)) da medida Omega.	51
Figura 19 – Distribuição de probabilidades dos retornos dos quatro ativos	60
Figura 20 – Distribuição de probabilidades dos retornos do portfólio P	
otimizado. (a) Otimização Média-Variância de Markowitz, (b) (c) e (d)	
Otimização pela medida Omega com diferentes níveis de L.	61
Figura 21 – Fronteiras eficientes na escala ES vs. EC	63
Figura 22 – Fronteiras eficientes na escala Média do Portfólio (E[R _P])	
vs.Variância	63
Figura 23 – L vs. Omega	64
Figura 24 – L vs. Média do Portfólio (E[R _P])	65
Figura 25 – Fronteiras eficientes para três níveis de L	66

Figura 26 – Distribuição de VPL0 do projeto E1(0) (E1 iniciado em t(0))	97
Figura 27 – (a) Distribuição VPL0 _P do portfólio P otimizado pela Média-	
Variância de Markowitz, (b) (c) e (d) Distribuição VPL0 _P do portfólio P	
otimizado pela medida Omega (Ω) com diferentes níveis de L.	99
Figura 28 – Fronteiras eficientes na escala ES vs. EC	101
Figura 29 – Fronteiras eficientes para três níveis de L	101
Figura 30 – Distribuição de VPL0 _P	111
Figura 31 – Distribuição de VPL0 _P +	112
Figura 32 - Distribuição do valor das opções da carteira	112
Figura 33 – ES na carteira com opções e na carteira sem opções	113
Figura 34 – In(Omega) na carteira com opções e na carteira sem opções	114

Lista de Tabelas

Tabela 1 – Cálculo dos Ganhos e Perdas Ponderadas	45
Tabela 2 – Cálculo do Omega Ω(L=1,4) empregando a fórmula alternativa	52
Tabela 3 – Propriedades Estatísticas dos Dados Históricos de Retornos de	
Quatro Ativos	59
Tabela 4 – Matriz de Coeficientes de Correlação	60
Tabela 5 – Composição do Portfólio	60
Tabela 6 – Principais Estatísticas do Portfólio Otimizado	62
Tabela 7 – Informação Básica de Projetos de Campos de Exploração	91
Tabela 8 – Informação Básica de Projetos de Refinarias	91
Tabela 9 – Parâmetros da modelagem MGB para as variáveis de risco	93
Tabela 10 – Matriz de Correlações entre as variáveis de risco	94
Tabela 11 – Fluxos de Caixa Esperados para o Projeto E1 (em milhões de	
dólares)	95
Tabela 12 – Valores de Mercado e Valores Presentes Líquidos dos Projetos	
(US\$MM)	96
Tabela 13 - Propriedades estatísticas dos projetos em diferentes períodos	
de início	97
Tabela 14 – Composição da carteira ótima – Média-Variância e Omega(L)	98
Tabela 15 – Principais Estatísticas do Portfólio sem Opções	100
Tabela 16 – Volatilidade dos Projetos, métodos BDH (Brandão et al.) e Dias.	102
Tabela 17 – Correlações entre VP _t dos Projetos	103
Tabela 18 – Informações básicas dos projetos	104
Tabela 19 – Opções a serem inseridas nos projetos no ano 5	104
Tabela 20 – Simulação de caminhos do valor de mercado, com opções	
embutidas para os projetos E1 e E2	106
Tabela 21 – $\overline{\mathrm{VP}}$ e $\overline{\mathrm{VPL}}$ dos Projetos com e sem Opções (MMUS\$)	109
Tabela 22 – Omega com L igual ao VPL de Mercado na Carteira sem	
Opções	111
Tabela 23 – Omega com L igual ao VPL de Mercado na Carteira com	
Opções	113

Lista de siglas, abreviaturas e símbolos

CAPM Capital Asset Pricing Model.

COV Covariância.

CVaR Condicional Value at Risk.
CVO Custo Variável Operacional.

EC Expected Chance ou Ganho Médio Esperado.
ES Expected Shortfall ou Perda Média Esperada.

EWMA Exponentially Weighted Moving Average.

FC Fluxo de Caixa.

FDC Função de Distribuição Cumulativa.

GARCH Generalized Autoregressive Conditional Heteroskedastic.

I Investimento.

IJ Índice de Jensen.
IS Índice de Sharpe.
ISor Índice de Sortino.
IT Índice de Treynor.

MAD Marketed Asset Disclaimer.

Max(.) Função Máximo.

MGB Movimento Geométrico Browniano.

Min(.) Função Mínimo.

OR Valor da Opção Real.

PB Preço do Óleo Brent.

PD Preço Médio do Derivado.

PP Preço do Petróleo.

RMA Retorno Mínimo Aceitável.

TIR Taxa Interna de Retorno.

TLR Taxa Livre de Risco.

TMA Taxa Mínima de Atratividade.

TPGP Taxa de Probabilidades de Ganhos vs. Perdas.

VaR Value at Risk.
VAR Variância.

 $\frac{\text{VP}_{\text{t}}}{\text{VP}} \qquad \qquad \text{Valor do Projeto no tempo t.} \\ \\ \frac{}{\text{VP}} \qquad \qquad \text{Valor de Mercado do Projeto.} \\$

 $\overline{\mathrm{VP}}^{\scriptscriptstyle{+}}$ Valor de Mercado do Projeto com Opções Reais.

VPL Valor Presente Líquido.

VPL0 VPL no período t=0.

VPL0⁺ VPL no período t=0 com Opções.

 $\begin{array}{ll} \overline{VPL} & \text{Valor esperado da distribuição de VPL sem Opções.} \\ \hline \overline{VPL}^{\scriptscriptstyle +} & \text{Valor esperado da distribuição de VPL com Opções.} \end{array}$

VR Variável de Risco.

WACC Weighted Average Cost of Capital.